Как частота связана с током

На этой страничке кратко излагаются основные величины и меры тока. По мере необходимости, страничка будет пополняться новыми величинами и формулами.

Сила тока – количественная мера электрического тока, протекающего через поперечное сечение проводника. Чем толще проводник, тем больший ток может по нему течь. Измеряется сила тока прибором, который называется Амперметр. Единица измерения - Ампер (А). Сила тока обозначается буквой – I.

Следует добавить, что постоянный и переменный ток низкой частоты, течёт через всё сечение проводника. Высокочастотный переменный ток течёт только по поверхности проводника – скин-слою. Чем выше частота тока, тем тоньше скин-слой проводника, по которому течёт высокочастотный ток. Это касается любых высокочастотных элементов - проводников, катушек индуктивности, волноводов. Поэтому, для уменьшения активного сопротивления проводника высокочастотному току, выбирают проводник с большим диаметром, кроме того, его серебрят (как известно, серебро имеет очень малое удельное сопротивление).

Напряжение (падение напряжения) – количественная мера разности потенциалов (электрической энергии) между двумя точками электрической цепи. Напряжение источника тока – разность потенциалов на выводах источника тока. Измеряется напряжение вольтметром. Единица измерения - Вольт (В). Напряжение обозначается буквой – U, напряжение источника питания (синоним - электродвижущая сила) может обозначаться буквой – Е.

Мощность электрического тока – количественная мера тока, характеризующая его энергетические свойства. Определяется основными параметрами – силой тока и напряжением. Измеряется мощность электрического тока прибором, который называется Ваттметр. Единица измерения - Ватт (Вт). Мощность электрического тока обозначается буквой – Р. Мощность определяется зависимостью:

Зависимость мощности от тока и напряжения

Коснусь практического применения этой формулы на примере: Представьте, что у Вас есть электронагревательный прибор, мощность которого Вам не известна. Чтобы узнать потребляемую прибором мощность, измерьте ток и умножьте его значение на напряжение. Либо наоборот, имеется прибор мощностью 2 кВт (киловатт), на напряжение сети 220 вольт. Как узнать силу тока в кабеле питающего этот прибор? Мощность делим на напряжение, получаем ток: I = P / U = 2000 Вт/220 В = 9,1 А.

Потребляемая электроэнергия – суммарное значение потребляемой мощности от источника электрической сети за единицу времени. Измеряется потребляемая электроэнергия счётчиком (обыкновенным квартирным). Единица измерения – киловаттчас (кВтч).

Сопротивление элемента цепи – количественная мера, характеризующая способность элемента электрической цепи сопротивляться электрическому току. В простом виде, сопротивление это обыкновенный резистор. Резистор может использоваться: как ограничитель тока – добавочный резистор, как потребитель тока – нагрузочный резистор. Источник электрического тока так же обладает внутренним сопротивлением. Измеряется сопротивление прибором называемым Омметром. Единица измерения - Ом (Ом). Сопротивление обозначается буквой – R. Связано с током и напряжением законом Ома (формулой):

Зависимость сопротивления элемента от протекающего тока и напряжения

где U – падение напряжения на элементе электрической цепи, I – ток, протекающий через элемент цепи.

Рассеиваемая (поглощаемая) мощность элемента электрической цепи – значение мощности рассеиваемой на элементе цепи, которую элемент может поглотить (выдержать) без изменения его номинальных параметров (выхода из строя). Рассеиваемая мощность резисторов обозначается в его названии (например: двух ваттный резистор - ОМЛТ-2, десяти ваттный проволочный резистор – ПЭВ-10). При расчёте принципиальных схем, значение необходимой рассеиваемой мощности элемента цепи рассчитывается по формулам:

Зависимость рассеиваемой мощности от тока и напряжения

Зависимость рассеиваемой мощности от протекающего тока и сопротивления элемента цепи

Зависимость рассеиваемой мощности от падения напряжения и сопротивления элемента цепи

Для надёжной работы, определённое по формулам значение рассеиваемой мощности элемента умножается на коэффициент 1,5 , учитывающий то, что должен быть обеспечен запас по мощности.

Проводимость элемента цепи – способность элемента цепи проводить электрический ток. Единица измерения проводимости – сименс (См). Обозначается проводимость буквой - σ. Проводимость - величина обратная сопротивлению, и связана с ним формулой:

Связь проводимости с сопротивлением

Если сопротивление проводника равно 0,25 Ом (или 1/4 Ом), то проводимость будет 4 сименс.

Частота электрического тока – количественная мера, характеризующая скорость изменения направления электрического тока. Имеют место понятия - круговая (или циклическая) частота - ω, определяющая скорость изменения вектора фазы электрического (магнитного) поля и частота электрического тока - f, характеризующая скорость изменения направления электрического тока (раз, или колебаний) в одну секунду. Измеряется частота прибором, называемым Частотомером. Единица измерения - Герц (Гц). Обе частоты связаны друг с другом через выражение:

Связь частот

Период электрического тока – величина обратная частоте, показывающая, в течение, какого времени электрический ток совершает одно циклическое колебание. Измеряется период, как правило, с помощью осциллографа. Единица измерения периода - секунда (с). Период колебания электрического тока обозначается буквой – Т. Период связан с частотой электрического тока выражением:

Связь периода и частоты колебания электрического тока

Длина волны высокочастотного электромагнитного поля – размерная величина, характеризующая один период колебания электромагнитного поля в пространстве. Измеряется длина волны в метрах (м). Длина волны обозначается буквой – λ. Длина волны связана с частотой и определяется через скорость распространения света:

Связь длины волны и частоты колебания электромагнитного поля

Электрическая ёмкость – количественная мера, характеризующая способность накапливать энергию электрического тока в виде электрического заряда на обкладках конденсатора. Обозначается электрическая ёмкость буквой – С. Единица измерения электрической ёмкости - Фарада (Ф).

Магнитная индуктивность – количественная мера, характеризующая способность накапливать энергию электрического тока в магнитном поле катушки индуктивности (дросселя). Обозначается магнитная индуктивность буквой – L. Единица измерения индуктивности - Генри (Гн).

Реактивное сопротивление конденсатора (ёмкости) – значение внутреннего сопротивления конденсатора переменному гармоническому току на определённой его частоте. Реактивное сопротивление конденсатора обозначается - ХС и определяется по формуле:

Реактивное сопротивление конденсатора

Реактивное сопротивление катушки индуктивности (дросселя) – значение внутреннего сопротивления катушки индуктивности переменному гармоническому току на определённой его частоте. Реактивное сопротивление катушки индуктивности обозначается ХL и определяется по формуле:

Реактивное сопротивление катушки индуктивности

Резонансная частота колебательного контура – частота гармонического переменного тока, на которой колебательный контур имеет выраженную амплитудно-частотную характеристику (АЧХ). Резонансная частота колебательного контура определяется по формуле:

Резонансная частота, или

Резонансная частота

Добротность колебательного контура - характеристика, определяющая ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки. Добротность обозначается буквой – Q.

Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:

Добротность последовательного колебательного контура где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно, добротность вычисляется:

Добротность параллельного колебательного контура

Скважность импульсов – это отношение периода следования импульсов к их длительности. Скважность импульсов определяется по формуле:

Скважность следования импульсов                                          
Источник: http://www.meanders.ru/velichinytoka.shtml



Рекомендуем посмотреть ещё:


Закрыть ... [X]

Электрическое поле сердца. Сердце как диполь Студопедия Фото с детскими вышивками

Как частота связана с током Как частота связана с током Как частота связана с током Как частота связана с током Как частота связана с током Как частота связана с током Как частота связана с током Как частота связана с током Как частота связана с током

Похожие новости